Potent DNA damage by polyhalogenated quinones and H2O2 via a metal-independent and Intercalation-enhanced oxidation mechanism

نویسندگان

  • Ruichuan Yin
  • Dapeng Zhang
  • Yuling Song
  • Ben-Zhan Zhu
  • Hailin Wang
چکیده

Polyhalogenated quinones are a class of carcinogenic intermediates. We found recently that the highly reactive and biologically/environmentally important ·OH can be produced by polyhalogenated quinones and H₂O₂ independent of transition metal ions. However, it is not clear whether this unusual metal-independent ·OH producing system can induce potent oxidative DNA damage. Here we show that TCBQ and H₂O₂ can induce oxidative damage to both dG and dsDNA; but surprisingly, it was more efficient to induce oxidative damage in dsDNA than in dG. We found that this is probably due to its strong intercalating ability to dsDNA through competitive intercalation assays. The intercalation of TCBQ in dsDNA may lead to ·OH generation more adjacent to DNA. This is the first report that polyhalogenated quinoid carcinogens and H₂O₂ can induce potent DNA damage via a metal-independent and intercalation-enhanced oxidation mechanism, which may partly explain their potential genotoxicity, mutagenesis, and carcinogenicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular mechanism for metal-independent production of hydroxyl radicals by hydrogen peroxide and halogenated quinones.

We have shown previously that hydroxyl radicals (HO*) can be produced by H2O2 and halogenated quinones, independent of transition metal ions; however, the underlying molecular mechanism is still unclear. In the present study, using the electron spin resonance secondary radical spin-trapping method, we found that tetrachloro-1,4-benzoquinone (TCBQ), but not its corresponding semiquinone anion ra...

متن کامل

Metal specificity in DNA damage prevention by sulfur antioxidants.

Metals such as CuI and FeII generate hydroxyl radical (.OH) by reducing endogenous hydrogen peroxide (H2O2). Because antioxidants can ameliorate metal-mediated oxidative damage, we have quantified the ability of glutathione, a primary intracellular antioxidant, and other biological sulfur-containing compounds to inhibit metal-mediated DNA damage caused hydroxyl radical. In the CuI/H2O2 system, ...

متن کامل

Decolorization of Cationic and Anionic Textile Blue Dyes from Aqueous Solution with Advanced Oxidation Process Using H2O2 and Various Catalysts

In this study, we used advanced oxidation process (AOP)for the removal of a cationic and anionic blue dyes, namely Basic Blue 3 (BB3) and Acid blue 62(AB62), from aqueous solutions. Fenton reactions are mixture of H2 O2 and Fe2+. However this paper investigates the application of twelve different catalysts such as: FeCl2 , FeSO4, (NH4 )Fe(SO4 )2 , FeCl3 , Nano iron (Fe0 ), Fe(NO3 )3 , K2FeO4 , ...

متن کامل

FT- SERS Study of Adriamycin - DNA Intraction

FT-SERS (Fourier Transform Surface Enhanced Raman Scattering) of adriamycin and its complex with DNA is reported. It is shown that in agreement with previous Raman studies the interaction of adriamycin  with DNA takes place through an intercalation mechanism. The presence of a new band at 731 cm-1 suggests that ring D of adriamycin is not involved in the intercalation process.

متن کامل

Peptide models in the study of the mechanism of carcinogenesis by heavy metals*

The molecular mechanisms of carcinogenesis involving heavy metal ions are not yet fully understood. Histones surrounding DNA are believed to be primary targets for metal ion binding, and such interactions may play a direct or indirect role in metal-induced toxicity carcinogenesis. This paper reviews our results of approximately the last 10 years in this area, starting from small peptide fragmen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013